Graphene versus Multi-Walled Carbon Nanotubes for Electrochemical Glucose Biosensing

نویسندگان

  • Dan Zheng
  • Sandeep Kumar Vashist
  • Michal Marcin Dykas
  • Surajit Saha
  • Khalid Al-Rubeaan
  • Edmond Lam
  • John H.T. Luong
  • Fwu-Shan Sheu
چکیده

: A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx), with graphene or multi-walled carbon nanotubes (MWCNTs). Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES) and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs). The EDC (1-ethyl-(3-dimethylaminopropyl) carbodiimide)-activated GOx was then bound covalently on the graphene- or MWCNT-modified GCE. Both the graphene- and MWCNT-based biosensors detected the entire pathophysiological range of blood glucose in humans, 1.4-27.9 mM. However, the direct electron transfer (DET) between GOx and the modified GCE's surface was only observed for the MWCNT-based biosensor. The MWCNT-based glucose biosensor also provided over a four-fold higher current signal than its graphene counterpart. Several interfering substances, including drug metabolites, provoked negligible interference at pathological levels for both the MWCNT- and graphene-based biosensors. However, the former was more prone to interfering substances and drug metabolites at extremely pathological concentrations than its graphene counterpart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical patterning of gold nanoparticles on transparent single-walled carbon nanotube films.

We report a simple, low cost, electrochemical deposition method to pattern gold nanoparticles on flexible, transparent, single-walled carbon nanotube (SWCNT) films, and demonstrate the application of the gold-patterned SWCNT films as surface-enhanced Raman spectroscopy substrates and biosensing electrodes for non-enzymatic glucose detection.

متن کامل

Electrochemical biosensors and nanobiosensors

Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an appro...

متن کامل

Carbon Nanostructures for Tagging in Electrochemical Biosensing: A Review

Growing demand for developing ultrasensitive electrochemical bioassays has led to the design of numerous signal amplification strategies. In this context, carbon-based nanomaterials have been demonstrated to be excellent tags for greatly amplifying the transduction of recognition events and simplifying the protocols used in electrochemical biosensing. This relevant role is due to the carbon-nan...

متن کامل

Gold-graphene oxide based nanocomposites for glucose biosensing application

Glucose is necessary fuel for all cells in our body at normal levels. Today, a large part of our world population is suffering from hyperglycaemia. Its detection in blood samples has to be quick and easy. Although several glucose detecting biosensors are available in the market these days, but still there is a need for highly sensitive and low detection limit sensors. One of the most fascinatin...

متن کامل

Electrochemical Sensing of H2S Gas in Air by Carboxylated Multi-walled Carbon Nanotubes

The electrochemical sensor for detecting hydrogen sulfide was fabricated. H2S gas molecules pass through polytetrafluoroethylene membrane with 0.22 mm pore size. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were used to fabricate working and counter electrodes. It can be seen from Field Emission Scanning Electron Microscopy (FESEM) images of the working electrode that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013